
 8/8/2018

Lab 10 - CMPS 1044- Computer Science I – Arrays

Objectives: Demonstrate use of statically allocated arrays in a variety of scenarios:
1. Initializing an array 2. Searching an array 3. Counting values in an array

An array in C++ is a named collection of values of a specific type stored in a sequence.
Although they may contain integers, floats, booleans, doubles or even structures, each array
contains only a single type. Here are some example uninitialized declarations.

Declarations: These declare space but do not contain any values yet.

 int A[10]; // Allocates an array that can contain 10 integers.

 float ave[100]; // Allocates an array that can contain 100 floats.

Note: You cannot initialize an array size with a variable, e.g. int X[size]. Later you will be

shown a way to do this using dynamic memory allocation. You can however initialize the size
of an array with a constant.

 const int SIZE = 20;

 int scores[SIZE]; // This works since constant values are handled

// during compile time.

Accessing the contents of an array – Individual values in an array are accessed using
subscripting. The first value in the A[10] array can be accessed via A[0], the second value by
A[1] and so on up to A[9]. NOTE: that the subscripting starts at 0 and goes up to 9, NOT 10.
A variable can also be used for the subscript, as long as the variable is in the range of the legal
subscripts. You can utilize a subscripted variable in the same ways you can any other
variable.

Examples:
 cin >> A[1] >> A[2 * 3];
 cout << A[5] << A[2 + X];
 if (ave[99] >= 50)…
 while (ave[4] <= A[y])…
 Z = A[4] + 10;

The contents of an array can be initialized in a variety of ways. If you do not initialize the array,
each location contains garbage. The following is a simple way to initialize every slot to the
same value.

 int Values[20] = { 0 }; // Initializes every array location to zero.

If you have different values you want to place in each slot, you can do something like this:

 char symbol[3] = { 'x', 'y', 'z' };

 int count[6] = { 2, 4, 6, 8, 10, 12 };

 int count[] = { 2, 4, 6, 8, 10, 12 }; // equivalent to the previous

line.

 8/8/2018

Of course you can always do something like the following:
 count[0] = 2; count[1] = 4; count[2] = 6; count[3] = 8;
 count[4] = 10; count[5] = 12;
Or by using a loop and a little math:

for (int i = 0; i < 6; i++)
count[i] = 2 * (i + 1);

What values are in the array after the for loop?

Using a for loop to initialize an array – Write a program that includes the following code then
execute. This will allocate an array named Values with the numbers from 1 to 10. It will then
print out these values.

int sub = 0; // This is our subscript variable. Starts out at 0
 int Values[10]; // Here is the array declaration
 // Load the array
 for (sub = 0; sub < 10; sub++) // This is not less than or equal. Why?
 {
 Values[sub] = sub + 1; // Note that when sub=0 this assignment is

// Values[0]=1; and so on.
 }
 // Print the contents of the array.
 for (sub = 0; sub < 10; sub++)
 {
 cout << Values[sub] << " ";
 }

 cout << "END OF OUTPUT\n";

Initializing an array with random numbers – To make things more interesting let’s allocate
an array and initialize it to random throws of a die. In other words, for each slot in the array we
will randomly generate a number from 1 thru 6 and put that number in the array.

rand(): To generate numbers the rand() function will be called. This function returns a random
integer from 0 to RAND_MAX. RAND_MAX is a constant defined in <cstdlib>. Its default value

may vary between implementations, but it is guaranteed to be at least 32767. The usual way
to generate pseudo-random number in a specific range is to use the modulo operator (%).
Here are some examples.

rand() % 5; // returns a number from 0 thru 4
 rand() % 10 + 1; // returns a number from 1 thru 10
Before using this function, the program should set the seed for the random number generator.
This seed determines the sequence of random numbers that are generated. The command
srand(int) is used to set the seed. A program that sets the same seed on each run will

generate the exact SAME sequence of random numbers, a feature that is quite useful when
you are debugging your programs. The following command can be used to generate a different
sequence each time the program is executed. Of course, you should not do this until after the
program is debugged. These functions need the inclusion of <ctime> at the top of your

program.
srand(time(NULL)); // the values returned by calls to rand() will be

// different on every run of the program.

 8/8/2018

Type in the following program and run it.

#include <iostream>
#include <fstream>
#include <cstdlib>
using namespace std;

int main()
{
 srand(7); // initialize a random number seed to 7
 const int size = 20; // Note: this is a constant NOT a variable.
 int Values[size]; // Here is the array declaration
 // Load the array
 for (int i = 0; i < size; i++)
 {
 Values[i] = rand() % 6 + 1;
 } // Loads a die throw.

 // Print the contents of the array.
 for (int i = 0; I < size; i++)
 {
 cout << Values[i] << " ";
 }
 cout << "\nEND OF OUTPUT\n";
 system("pause");
 return 0;
}

Every time you run the above program you will get the same sequence. Make several runs

and check it. Now change the seed and see what happens.

Counting the die values in the array – Now, let’s process the above array and count the
number of 1’s, 2’s, ... 6’s and see how close the values are to being “random”. If it is uniformly
distributed, we should have about the same number of each.

If we want to keep track of the number of each result, we could declare six individual variables.
However, it is much more efficient to use an array to accumulate the number each outcome.
We will allocate an integer array Count of size 7 to contain the different die counts. In other

words, Count[1] will hold the number of 1’s, Count[2] the number of 2’s and so on. Since

the contents of Values[i] is always 1 through 6 we can use it to subscript Count. The

following is an example of this process.

int Count[7] = { 0 };// initialize it to zero.
 for (int i = 0; i < size; i++)
 {

Count[Values[i]]++;// Increment the appropriate Count.
 }
 // Write code to print out the contents of Count properly.

 8/8/2018

LAB ASSIGNMENT
Write a program that will load an array of size 100 with random numbers as generated by

rand(). These will be in the range from 0 to RAND_MAX. Use srand(5) to set the seed. Add to

this code a section that will search the array and print out the largest number found and its

position. Also calculate and print the average of all the values. You will need to initialize

variables for the largest number and its position, as well as variables for the sum and average.

Include a header, an output file with your header at the top, and at least three comments in the

body of your code.

